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The acceleration set theory developed in the companion report is applied to two important

problems which arise in the design of manipulator systems for performance: manipulator type

selection and actuator size determination. A systematic procedure is given for the comparison of

the performance, based on acceleration, of a set of alternative manipulator types. This procedure is

then used to compare the performance of three well-known manipulator designs which have been

proposed for high performance. Simple algorithms, based on the acceleration set theory, are given

for the determination of the minimum actuator sizes to obtain a specified isotropic acceleration.

The ease of implementation of these algorithms is demonstrated by actual examples. The

experimental determination of acceleration sets is also addressed and simple experimental results

are presented and compared with those predicted by the theory.



1 Introdudion*

In this paper, we apply the acceleration set theory developed in (Desa and Kim, 1989) to the following

two important problems which arise in the design of manipulator systems:

1. The selection of manipulator type from a given set of feasible alternatives.

2. The determination of the act' ator sizes for a given manipulator type.

One approach to solving the above two problems is to define suitable performance measures. These

performance measures could then be used as a basis for comparing different manipulator types in order

to select the "best" one. Furthermore, if the performance measures could be explicitly related to the input

design variables of the problem, for example actuator size, then we could use these measures to obtain

values ("sizes") of the design variables to meet a desired level of performance.

In this paper, we show how acceleration properties of the acceleration sets, when interpreted as

performance measures can be used to provide solutions to the'" manipulator type selection" problem and

the" actuator sizing" problem state above.

Several performance measures for manipulators have been proposed in earlier studies (Asada, 1983;

Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh; 1988) and it is useful to briefly

discuss these performance measures within the present context. (Asada, 1983) has defined a General Inertia

Ellipsoid (GEE) to characterize manipulator dynamics: this measure does not have a clear physical meaning

and is mostly useful in those cases where the nonlinearities in the joint velocities are zero. (Yoshikawa,

1985) defines a dynamic manipulability index which is essentially based on the linear mapping between the

actuator torques and end-effector acceleration and therefore does not take into account the nonlinearities in

joint velocities. (Khatib and Burdick, 1987) define a performance measure whose physical meaning is not

clear and which, in addition, accounts for the nonlinearities in a somewhat ad-hoc fashion by evaluating

the measure at one "high" and one "low" joint velocity vector. These drawbacks have been pointed out in

(Graettinger and Krogh, 1988) who propose an acceleration radius, which in the terminology of (Khatib

and Burdick, 1987) or (Desa and Kim, 1989) is the isotropic acceleration over an operating region and can

be thought of as a "global isotropic acceleration". Since the isotropic acceleration does not always exist

and is zero at a singular point, global isotropic acceleration (acceleration radius) will in general be zero

Equation (l.x) refers to equation (I.x) in Part I (i.e. (Desa and Kim, 1989)). Every equation in the current paper
(i.e. Parti) starts with "2., for example (2.46).



unless the operating region is small enough, in which case it approaches the local isotropic acceleration,

one of the measures proposed in the current paper. Furthermore, designing for global isotropic acceleration

(acceleration radius) when possible will result in actuators which are grossly oversized.

In section 3, we propose a group of performance measures of increasing complexity, based on the

theory developed in the companion paper, (Desa and Kim, 1989), which are attractive for the following

reasons:

1. They have simple physical meanings.

2. They can be directly related to the manipulator parameters and input variable rates (actuator torques,

joint variables) and therefore can be used for design and redesign.

3. The most" complex" performance measure, the local isotropic acceleration takes nonlinearities into

account in an "exact" manner.

A direct consequence of (2) and (3) is that a typical design problem like the determication of actuator

sizes to guarantee a specified isotropic acceleration can be solved in a relatively straightforward manner

and without resort to complex nonlinear optimization as in (Graettinger and Krogh, 1988).

The paper is organized as follows: In section 2, we present a heuristic justification for using accelera-

tion (and acceleration properties) as a measure of dynamic performance for manipulators. Several useful

acceleration-based performance measures are then defined in section 3. These performance measures are

then used to solve the "manipulator type selection" problem in section 4 and to solve the "actuator sizing"

problem in section 5.

The experimental determination of acceleration sets is described in section 6. The simple experimental

results presented in this section serve to validate the theory presented in the companion paper.

2 Dynamic performance

Dynamic systems are designed to perform a variety of tasks. Each task generally has an inherent measure

of its performance which we will refer to as the task performance measure. For example, if the dynarn.I;

system is a manipulator and the task is for a reference point P to move from one point to another, then
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Manipulator tasks
point-to-point motion
obstacle avoidance, etc. I

Performance Maximum Isotropic.
measures acceleration acceleration

Operating Start-up In-motion Local Start-up In-motion Localconditions (amaxsu) (amaxir) (amax,local) (aiso,su) (aiso,im) (ai so,locaj

Figure 1: Performance measures for manipulators

the time t required to perform this task is a measure of how well the manipulator performs the task and is

therefore an appropriate task performance measure. (We would, of course, like to minimize the time t.)

The performance measures used to characterize a dynamic system, on the other hand, are quantities

which one can readily extract from the dynamical equations describing the behavior of the system; we will

refer to these performance measures as the dynamic-system performance measures. In general, explicit

functional relations do not exist between the task performance measures and dynamic system performance

measures.

In the above example of the manipulator as a dynamic system with the task being to move the

reference point P from one point in the workspace to another, the time t required to perform this task

(task performance measure) cannot be readily extracted from the dynamical equations. However, as we

have shown, the acceleration capability of the manipulator (as defined in section 3 of (Desa and Kim,

1989)) can be extracted from the dynamical equations (as shown in sections 4 and 5 of (Desa an, Kim,

1989)). For a dynamic system performance measure to be useful, it should be related at least implicitly

to the task performance measure. It is well known, from computer generated numerical solutions of the

problem (Bobrow, Dubowsky and Gibson, 1985), that the time required to move a reference point P of

the manipulator from one point in the workspace to another depends on the "acceleration capability" of

3



the manipulator if one "improves" the acceleration capability of a manipulator, then the time required to

perform the task is reduced. Therefore, the "acceleration capability" of a manipulator is a useful dynamic

system performance measure.

Specifically, we use two properties of the acceleration sets (or acceleration capability) as dynamic

system performance measures: the maximum acceleration and the isotropic acceleration. Furthermore,

we are generally interested in these performance measures under three operating conditions, start-up. in.

motion, and local, which are defined below. Figure 1 depicts the view of tasks and performance measures

for manipulators presented in this chapter.

Comments:

1. The reason for defining three types of operating conditions is that the start-up condition is easier to

design for than the in-motion condition which in turn is easier to design for than the local operating

condition. Therefore, the start-up condition can be used to obtain very quick approximate results

which can then be refined for other operating conditions (see section 6).

2. The isotropic acceleration is a measure of the ability of the manipulator to accelerate in all directions

and can be thought of as a measure of the manuverability of the manipulator (Graettinger and Krogh,

1988) or its ability to avoid obstacles.

3 Performance measures

3.1 Start-up acceleration capability

Definition: The start-up acceleration capability of a manipulator, corresponding to a given configuration

q in the workspace, is the set of all available acceleration vectors of a reference point P when the

manipulator is at rest and input torques rl and I are applied at the (driven) joints.

From the above definition, it is clear that the start-up acceleration capability as defined above is simply

the acceleration set S, which is given by equations (1.34).
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3.2 In-motion acceleration capability

Definition 1: The in-motion acceleration capability of a manipulator is the set of all available acceleration

vectors of a reference point P when the point P is moving with a v'ocity ip at a given position P

in the workspace.

When the point P is at a position P with a velocity xV,

1. the corresponding configuration q of the manipulator can be obtained from V by solving the inverse

kinematic problem (Desa and Roth, 1985), and

2. the corresponding joint variable rate vector q can (except for a certain finite number of singular

positions) be obtained from equation (1.22) as

4 = J-ip. (2.1)

We can therefore restate Definition I in the following equivalent form:

Definition 2: The in-motion acceleration capability of a manipulator is the set of all available acceleration

vectors of a reference point P when the manipulator is in the dynamic state u = (q, 4) and the

actuator torques r* and r2 are applied at the driven joints.

From the above definition, it is clear that the in-motion acceleration capability of the manipulator as

defined above is simply the state acceleration set Su, which is given by equations (1.39).

3.3 Definition of performance measures

In order to be able to design a manipulator to have desirable acceleration capability, we need to be

able to extract suitable performance measures. Six such measures are defined below: the first two

characterize the acceleration capability at start-up, the next two characterize the acceleration capability

when the manipulator is in motion, and the last two characterize the (local) acceleration capability at any

configuration in the workspace. It should come as no surprise that the performance measures as defined
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below are the properties of the acceleration sets determined in section 5 of the companion paper (Desa

and Kim. 1989).

1. Maximum start-up acceleration, a.,.

Definition: The maximum start-up acceleration a,. is the maximum available acceleration of a ref-

erence point P when the manipulator is at rest and (input) torques rl and r2 are applied at the

joints.

From the above definition, it is clear that the maximum start-up acceleration is given by

a...,. = a..($.) = max[a(S.)], (2.2)

where aum(Sr ) is given by equation (1.69).

2. Isotropic start-up acceleration, aiosu

Definition: The isotropic start-up acceleration aij, , is the maximum available acceleration in all direc-

tions of a reference point P when the manipulator is at rest in a configuration q and (input) torques

-r and r2 are applied at the joints.

From the above definition, it is clear that the isotropic start-up acceleration is given by

aso,s, = aizo(S), (2.3)

where ai, (S1) is given by equation (1.70).

3. Maximum "in-motion" acceleration, ama,im

Definition 1: The maximum "in-motion" acceleration of a manipulator is the maximum available accel-

eration when the reference point P moves with a velocity *P at a position xP' in the workspace.

An equivalent definition for ama,im is the following:

Definition 2: The maximum "in-motion" acceleration of a manipulator is the maximum available accel-

eration of a reference point P when the manipulator is in a dynamic state u and actuator torques ri

and r2 are applied at the joints.
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From the above definition, it is clear that the maximum "in-motion" acceleration is given by

amj, = am,.(Su) = max[a(Su)], (2.4)

where am.,(Su) is given by equation (1.130).

4. Isotropic "in-motion"acceleration, ao,im

Definition 1: The isotropic "in-motion" acceleration of a manipulator is the maximum available accel-

eration in all directions when the reference point P moves with a velocity xP at a position x1* and

torques are applied at the driven joints.

An equivalent definition for aio,i is the following:

Definition 2: The isotropic "in-motion" acceleration of a manipulator is the maximum available accel-

eration of a reference point P in all directions when the manipulator is in a dynamic state u and

torques Ti and r2 are applied at the driven joints.

From the definition above, it is clear that the isotropic in-motion acceleration is given by

aiso,ir 2: aiso(Su), (2.5)

where ai,,(Su) is given by equation (1.133).

5. Maximum local acceleration, a,,.jw

Definition: The maximum local acceleration amx, low of a manipulator is the maximum available accel-

eration of the reference point P at a configuration q of the manipulator.

The maximum local acceleration amax,1oo is bounded by the upper bound (am.x,oc1)ub given by (1.151)

and the lower bound (amax.,o,1J)1b given by (1.130) with the vector k evaluated at the joint variable vector
q which maximizes l(4i, i/2) in equation (1.89).

6. Isotropic local acceleration, aiso,,o_.d
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Definition: The isotropic local acceleration ai.,,.i of a manipulator is the maximum available acceler-

ation of the reference point P in all directions when the manipulator is at the (local) configuration

q in the workspace.

The isotropic local acceleration ais5 ,Iw is given by equation (1.152).

3.4 Uses of the acceleration measures

The six acceleration measures can be used for the following purposes:

1. To compare different manipulator types in order to select a manipulator type with the "best" accel-

eration capabilities.

2. To design a manipulator to yield certain specified acceleration properties.

3. To redesign a given manipulator in order to improve its acceleration properties.

4. To yield estimates of the inertia forces which can then be used to size the links in very "high-

performance" applications.

In the next two sections, we demonstrate the first two uses of the acceleration measures. In section

4, we also address simple redesign, i.e., performance improvement by changing actuator size.

Comment:

Since the isotropic acceleration is a measure which, by definition, is "direction-invariant", it is a more

useful measure for the solution of problems 1 and 2.
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4 Selection of manipulator type

After defining the manipulator type selection problem, we present a procedure for its solution (section 4.2).

This procedure is applied in section 4.3 to three popular manipulator types which have been proposed for

"high performance".

4.1 Definition of the problem

General problem statement

Given a set of alternate manipulator types, select the manipulator type which yields the best perfor-

mance.

In section 5.1 and 5.2, we established the use of acceleration and acceleration properties as measures

of performance. We can therefore restate the above general problem statement in a more precise manner

for our purposes as follows:

Specific problem statement

Given a set of alternative manipulator types, select the manipulator type which yields the largest

isotropic acceleration under various operating conditions (start-up, in-motion and local).

4.2 Procedure for type selection

1. Determine the geometric and inertia parameters for each manipulator type.

2. Determine the ranges for the inputs, q and r, of each manipulator type.

3. Determine the acceleration sets S., S4 and Su for each manipulator type. (We did this in section 4

of Part I (Desa and Kim, 1989) for the planar two degree-of-freedom manipulator of Figure 4.)

4. Extract the isotropic acceleration for the sets S , S4 and Su (using the theory developed in section

5 in Part I (Desa and Kim, 1989)).

9
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Figure 2: Manipulmtr typ 2 (from Asada arnd Youcef -Toumi, 1985)

5. Obtain the isotropic acceleration for each manipulator type under various operating conditions

(start-up, in-motion and local) using (1.70), (1.133) and (1.152).

6. The "best" manipulator type is the one which has the largest isotropic acceleration under the various

operating conditions for the configuration (q) of interest.

7. Critically examine the possibility of redesigning each manipulator type and then repeat steps 1

through 6 for the redesigned manipulator.

8. Perform stepsl through 7 for various configurations (q) of interest.

4.3 Example

As an illustration of the above procedure, we compare the performance of the three manipulator types

shown in Figure 8 (Asada and Kanade, 1983), Figure 2 (Asada and Youcef-Toumi, 1985) and Figure 3

(Newman, 1988). which will be referred to, respectively, as manipulator type 1. manipulator type 2 and

manipulator type 3. Manipulator type I was the original direct drive manipulator. Manipulator type 2

in which both actuators are mounted at the base was proposed in order to improve the performance of

10



steel bands

motor I motor 2

Figure 3: Manipulator type 3 (from Newman, 1987)

manipulator type 1; note that this manipulator type has a "closed kinematic chain". Later manipulator type

3 was proposed in order to improve the performance of manipulator type 2. The parameters and variables

for manipulator types 1, 2 and 3 are given, respectively, in Figure 4, Figure 5 and Figure 6. (Note that

the joint variable q2 for manipulator type 1 is different from the joint variable q2 for manipulator type 2).

The dynamic equations for each manipulator type are given in Appendix A and were used to determine

and extract the properties of the acceleration sets S!, S4 and Su using the theory developed in (Desa and

Kim, 1989). The maximum and isotropic acceleration under the three operating conditions are then

determined.

The numerical values of the link parameters for each manipulator type are given in Table 1. Two

identical actuators, with maximum torques rTo and rj of 30 Nm were used. The input torque set is given

by

T= {r II Ti 1< 30.0 Nm, i= 1,2} (2.6)

and the set of joint variable rates given by

F= 1: <5.0 rad/s, i = 1,2. (2.7)
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Figure 5: Parameters and variables for manipulator type 2

m2 12/

12

Figure 6: Parameters and variables for manipulator type 3
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Manipulator 1:

link 1: 11 = 0.303 ai = 0.196 ml = 2.259 11 = 0.129

link 2: 12 = 0.303 a2 = 0.088 m2 = 1.126 12 = 0.103

Manipulator 2:

link 1: 11 = 0.303 al = 0.088 ml = 1.126 Ii = 0.103

link 2: 12 = 0.303 a2 = 0.088 m2 = 1.126 12 = 0.103

link 3: 13 = 0.303 a3 = 0.088 m3 = 1.126 13 = 0.103

link 4: 14 = 0.303 a4 = 0.088 m4 = 1.126 14 = 0.103

15 = 0.303

Manipulator 3:

link 1: 1i = 0.303 al = 0.088 ml = 1.126 11 = 0.103

link 2: 12 = 0.303 a2 = 0.088 m2 = 1.126 12 = 0.103

Table 1: Initial design parameters of manipulator types 1, 2 and 3

14



Operating Configuration Isotropic acceleration, aij M/s 2

condition q = (qi, 42) manipulator type I manipulator type 2 manipulator type 3

Start-up (00, 450) 24.4 21.5 21.1

(00, 900) 26.9 27.8 28.5

In-motion (00, 450) 20.8 5.14 8.83

(41 = 5 r/s, 42 = -5 r/s)

Local (00, 450) 5.74 5.14 8.83

Table 2: Isotropic acceleration of the initial design of three manipulator types

Each link of all the three manipulator types was chosen to be the same. The weight of the second actuator

r2 (mounted on the second link) causes the values of al and mi for link I of manipulator type 1 to be

different from the corresponding values of link 1 for the other manipulator types.

The results obtained for isotropic acceleration for the initial design are given, respectively, in Table

2. (Note that the start-up accelerations were computed for two different configurations).

Let us now examine the possibility of performance improvement by increasing the actuator size of the

two actuators. Increasing the size of actuator 2 (T2) for manipulator type 1 will have an adverse effect on

its performance because the additional weight of the second actuator will be an additional inertial "load"

on the first actuator. So, it is not advisable to increase the size of the second actuator. Furthermore, in

the present example it is the size of actuator I which determines the isotropic acceleration and increasing

the size of the first actuator alone will not change the isotropic acceleration (see section 5.5). Therefore,

manipulator type 1 is not a good candidate for redesign. The actuator sizes of both actuators can be

readily increased for manipulator types 2 and 3 since both actuators (for each of these types) are mounted

at the base. We will therefore consider the effects of doubling the size of both actuators of manipulator

types 2 and 3. The results obtained for the isotropic acceleration for the redesigned manipulator types 2

and 3 are given in Table 3.

From the results of Table 2 and Table 3, we can draw the following condition.

15



Operating Configuration Isotropic acceleration, aj, m/s 2

condition q = (41, 42) manipulator type 2 manipulator type 3

Start-up (00, 450) 43.0 42.2

(00, 900) 55.6 57.0

Ia-motion (00, 450) 10.2 17.6

(qi - 5 r/s, 2 = -5 r/s)
Local (00, 450) 10.2 17.6

Table 3: Isotropic acceleration of the redesigned manipulator types 2 and 3

1. Based on the local isotropic acceleration (which takes the nonlinearities into account) of the initial

design (Table 2), the manipulator type 3 is "better" than the manipulator type 1 which slightly better

than manipu.ator type 2.

2. When we take advantage of the fact that manipulator types 2 and 3 can be redesigned, we see that

(based on local isotropic acceleration in Table 3) manipulator type 3 is better than manipultor type

2 which is better than (the initial) manipulator type 1.

These conclusions are borne out in practice: it is well-known that manipulator type 3 is "faster" than

manipulator type 2 which in turn is much "faster" than manipulator type 1. (The reason manipulator

types 2 and 3 are better than manipulator type I is because they both have all their actuators mounted

at the base. The reason manipulator type 3 is better than manipulator type 2 is because the "steel-belt"

used in manipulator type 3 to transmit the torque from the base actuator to the second link has negligible

inertia compared to the linkages used in manipulator type 2 to transmit the torque from the base actuator

to the second link.)
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5 Determination of the actuator size for isotropic acceleration

In this section, we demonstrate how the theory developed in (Desa and Kim, 1989) can be used to solve

the "actuator size determination" problem in a relatively straightforward fashion.

5.1 Introduction

Given a manipulator at a configuration q in the workspace with specified geometric (i.e., link lengths,

etc.) and inertia parameters (i.e., masses, moment of inertias, etc.), and specified workspace and joint

variable rate constraints, determine the actuator torques required to yield a specified (desired) acceleration

property (for example, a specified local isotropic acceleration).

5.2 Definition of the problem

Definitions

r= input parametei (,;r variable); the input parameters are the geometric and the inertia parameters.

7! 1, 12, a,, a2, M, M , 11, 12 ]T input parameter vector with fh component 77j.

W workspace of the manipulator.

F joint rate variable set.

T torque set.

a some specified acceleration property under a given operation condition (start-up, in-motion, local),

for example, aiso,su.

Problem statement

Given the input vector 77 of link parameters and the constraint sets

W = {qJq,. < qi <5 qiu, i1,2}

17



and

F-- 1:5 4 lj. /, i = 1, 2},

determine the torque set

T= {r ITI ri 1-- ri., i = 1,2}

to yield the specified acceleration a. The required actuator sizes are of course rI. and r2,

5.3 Solution procedure

We distinguish two cases, the first where the manipulator parameter vector r7 is independent of the weight

of the actuators and therefore of -ri and r2. and the second where r depends on the actuator weights and

therefore on ri. and r2,.

In each case we will obtain the actuator sizes to yield a desired isotropic acceleration under the three

operating conditions.

Case 1: Manipulator parameter vector q7 is independent of the actuator sizes ri. and r.

I (a) Determination of actuator sizes for specified start-up isotropic acceleration

Given a specified manipulator parameter vector 17, determine actuator sizes flo and r2. to yield a spec-

ified start-up isotropic acceleration a's. at a given configuration q in the workspace of the manipulator,

i.e., determine rto and r2. such that

aigo, _ aiso,,. (2.8)

The minimum actuator sizes rio,mi and r7 o,mrn required to satisfy the requirements (2.8) are given by

1 2
aiso,s Va 2 + a 2 (Tio,min - J det(A) (2.9)

a ~,afi41+a 1I det(A) I

18



Proof: Equation (1.70) expresses the isotropic start-up acceleration in tems of the actuator torques rio

and r2.. Equation (1.70) is equivalent to the following two conditions

I det(A) I rio(2.11)

I det(A) I r2, > ais,,. (2.12)

Combining equations (2.8) (2.11) (2.12), we obtain
Sdet(A) I rito

Va, a,>aso,su (2.13)

I det(A) I r2o > at (2.13)

For a given matrix A (i.e., for given aij and det(A), the actuator size rTo will be a minimum when equation

(2.13) is an equality. Denoting by rjxj. the value of rio when (2.13) is an equality and solving (2.13)

for r,m,, we obtain the result (2.9). Starting with (2.14) and reasoning in a similar fashion, we obtain

the result (2.10) for rom.

1 (b) Determination of actuator sizes for specified in-motion isotropic acceleration

Given a specified manipulator parameter vector r7, determine actuator sizes r1o and rI to yield a

specified in-motion isotropic acceleration a' ji for a given manipulator state u = (q, 4), i.e., determine

rio and r2, such that

alto,ia 2! aioiM (2.15)

at u = (q, 4).

The minimum actuator sizes ro,min and 7 ,,o,min required to satisfy the requirement (2.15) are given by

a= a22 + a 2+j a22k - a12k2 I (2.16)
rio0rainfl I det(A) I

ai, inaialI + ajl+ I a21k - allk2 1~m1= det(A) (2.17)

(Comment: k, and k2 are the components of the vector k which is defined in section 4 of Part I (Desa

and Kim, 1989).)
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Proof: Equation (1.133) expresses the isotropic in-motion acceleration in terms of the actuator torques

rio and mjo. Equation (1.133) is equivalent to the following two conditions

I det(A)1n 0o - Ia22ki - a2k2l > j (2.18)

I det(A)Irzo - ja2 iki - aik2I > aiso,im. (2.19)

Combining (2.18) (2.19) and (2.15), we obtain

I det(A)Irlo - ja 22 k, - aj2k21 a (2.20)

V/aI2 + a=

I det(A)Ir2, - ja2 iki - alik 2 I
a~z~> (2.21)

For a given matrix A (i.e., for given aij and det(A) and coefficients k! and k2, the actuator size rio will

be a minimum when equation (2.20) is an equality. Denoting by roj.,. the value of rIo when (2.20) is

an equality and solving (2.20) for t1o,mm, we obtain the result (2.16). Starting with (2.21) and reasoning

in a similar fashion, we obtain the result (2.17) for r),mif.

1 (c) Determnation of actuator size for specified local isotropic acceleration

Given a specified manipulator parameter vector q7, determine actuator sizes rlo, and "r2, to yield a

specified local isotropic acceleration a ,.j for a given configuration q, i.e., determine rh, and il2o such

that

aqsojoca 2! aisoloca. (2.22)

The minimum actuator sizes rio,min and 71o,mwi required to satisfy the requirement (2 22) are given by

rlo,min = " 'e(A [a 1o jo + Pmax((Sq)., ) (2.23)

0 ,min = det(A) [ais al+ Pm.X(S 1),12)] (2.24)

where pmax(X(Sq), 4), (i = 1, 2) are given by equation (1.92) in subsection 5.2 of Part I (Desa and Kim,

1989).
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Proof: Equation (1.152) expresses the local isotropic acceleration in terms of the actuator torques ri, and

r2.. Equation (1.152) is equivalent to the following two conditions

I det(A)Iri. - Pmx(X(Sq), 11) > ai,.,. (2.25)

I det(A)Ir2 - pmx(k(Sq), 12) aisoocl. (2.26)

Combining (2.25) (2.26) and (2.22), we obtain
I det(A) IT1,rm xk S4 ,1) a'( .7

I I

det(A)Iri72, pmax(k(Sq), l) > a 1ol 0c (2.27)

Sdet(A)Ir , mx((q)
((S)/2) - isoocl.(2.28)

For a given matrix A (i.e., for given aij and det(A) and pm.x(k(Sq), li) (given by equation (1.92) in

section 3 of Part I (Desa and Kim, 1989), the actuator size ro will be a minimum when equation (2.27) is

an equality. Denoting by frown the value of rl. when (2.27) is an equality and solving (2.27) for r1omin,

we obtain the result (2.23). Starting with (2.28) and reasoning in a similar fashion, we obtain the result

(2.24) for 1ro,min.

Case 2: Manipulator parameter vector 77 is dependent on the actuator sizes rl, and r2,

The algorithm for computing the actuator sizes is shown in Figure 7. Essentially, we should embed

"Case I" in a closed-loop which compensates for the fact that t does depend on rl0 and rZ.

The algorithm (Figure 7) consists of the following steps:

1. Initialization. The initial parameter vector r) is computed based on the actuator weights being set

to zero. The values of the actuator sizes, denoted by r10(old) and r2o(old), are set to zero.

2. Compute actuator sizes ri(new) and rm(new) based on a given parameter vector r7 as in Case 1

(Use Case l(a) for start-up, Case l(b) for in-motion and Case l(c) for local).

3. Check whether rjo and T2, converge using the following convergence criteria

rio(new)- ro(old) < (2.29)
rio(old)
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Initialization
Set actuator weights to zero.
Initialize manpulator parameter
vector '9 based on zero
actuator weights.

I 10l(old) = 0, -r2 0 (old) = 0

-r10 (old) <- -r1 0 (new)1

'2~l)<- -r2 o (new) Compute actuator sizes
-rl0 (new), -r20 (new)) as in Case 1

Update v7
based on actuator wei hts

Obtain actuator weights
corresponding to
rlne) -r 20 (new)

' lo~ne -r lo

-r2o, min<- -r20 (new)

Figure 7: Algorithm for computation of actuator sizes to yield desired acceleration

requirements for the case where the manipulator parameter vector Y7 depends on the

actuator sizes rl. and r2.
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ri(new) - ir(old) (2.30)
r- ,(old)

where el and e2 am defined by the user. If (2.29) and (2.30) am satisfied. rj,,. - 7)(new) and

r,, a j,(new) and the design is complete.

4. If (2.29) and (2.30) am not satisfied, update the parameter vector 17 based on new actuator sizes

71o(new) and rjo(new), and go to step 2.

The closed loop shown in Figure 7 essentially performs iterations of step 2, 3, and 4 till the convergence

criteria are satisfied.

Comment:

The "start-up" case can be used to get a quick design which can be successively refined by doing the

"in-motion case" and "local case". This is demonstrated in the example below.

5.4 Example:

Determination of actuator sizes for acceleration properties for a two degree-of-freedom serial planar

manipulator.

We illustrate how we determine the minimum actuator sizes of a planar two degree-of-freedom ma-

nipulator built in our laboratory for the following three cases

Case 1: (Start-up) ai,,., = 3 m/s 2 at (q, = 0, q2 = 900)

Case 2: (In-motion) aiso,bm = 3 m/s 2 at (q = 0, q2 = 900, 41i = Irad/s 2, 2 = Irad/s 2)

Case 3: (Local) ajsojow = 3 m/s 2 at (qi = 0°, q2 = 90)

Initialization

Initial link parameters for links I and 2 are as follows:

link 1: 11 = 0.303 m, at = 0.088 m, ml - 1.126 Kg, 11 = 0.103 Kg m 2,

link 2: 12 = 0.254 m, 02 = 0.094 m, m2 = 1.120 Kg, 12 = 0.003 Kg m2,
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Since our manipulator belongs to manipulator type I in section 4, we use the loop-algorithm in Case 2.

Case 1: Design for start-up acceleration

To give the reader a feel for how to size actuators using the algorithm, we include the results of the

three iterations which were needed to obtain the actuator sizes.

Iteration 1.

Using equations (2.9) and (2.10) with the initial link parameters, we come up with the following

actuator sizes,

T~o, = 2.13Nm,

= 0.15Nm. (2.31)

Iteration 2.

Since we can vary the actuator torques between 0.2 - 5 Nm using the gear reduction, the weight of

brushless motor is assumed to be around 1.1 Kg. Our manipulator is manipulator type I and we include

the actual weight of actuator 2 to obtain a new set of parameters.

link 1: 11 = 0.303,al = 0.196,ml = 2.259 ,11 = 0.129,

link 2 :12 = 0.254, a2 = 0.094,m2 = 1.129,12 = 0.003. (2.32)

If we use equations (2.9) and (2.10) with the new set of link parameters in (2.32), then we come up with

the following actuator sizes,

rlo,mi. = 3.17Nm,

=.,min = 0.15Nm. (2.33)

Iteration 3.

Since the weight of actuators is assumed to be around 1.1 Kg, we have the manipulator parameter set

in (2.32). If we use equations (2.9) and (2.10) with the set of link parameters in (2.32), then we come up

with the same actuator sizes as in calculation 2 as follows,

r1o,mi. = 3.17Nm,

= 0.15Nm. (2.34)
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The required actuator sizes, therefore, are the values in (2.33).

Case 2: Design for in-motion accelration

Similarly, using (2.16) and (2.17) and employing the algorithm (Figure 7), we obtain the following

minimum actuator sizes to satisfy the in-motion isotropic acceleration

rio,min = 3.42Nm,

r2omm = 0.17Nm. (2.35)

As expected, because of the non-linear effects when the manipulator is "in-motion", results (2.35) show

that we should use bigger actuators in order to achieve the same level of acceleration properties as in

manipulator start-up.

Case 3: Design for local acceleration

Using (2.23) and (2.24) and employing the algorithm, in Figure 7, we obtain the minimum actuator

sizes to satisfy the local isotropic acceleration

rlo~mi = 4.12Nm,

r~omm = 0.7Nm. (2.36)

As expected, we come up with the bigger actuator sizes in (2.36) than those of the "in-motion" results in

(2.35).
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Motor 2

i Lin2

LikMotor I

Figure 8: Mechanical components of a two degree-of-freedom manipulator

6 Experimental verification

In this section, we describe simple experiments which are used to determine the acceleration set S.

(Start-up acceleration capability) and then compare the experimental results with those obtained using the

analytical results of Part I.

6.1 Description of the two degree-of-freedom manipulator experimental set-up

The mechanical structure of the two degree-of-freedom manipulator is shown schematically in Figure 8.

The design , modular so that the links can be easily changed, thus allowing one to study the effect of

changing the link parameters. Each link is driven by a motor as shown in the Figure. A schematic of the

control hardware which is used to drive each motor, and thereby control the torque applied to each link.

is shown in Figure 9; the main points to note in the control hardware are the following:

1. A specified input torque commanded from a terminal (by the user) is transmitted to the pulse-width-

modulation (PWM) generator by the MC68K microprocessor board.
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Host micro-vax

Terminal [o

rial [-- 1 Main MC68K board

IMulti-bus

Secondary
MC68K board

Interface board

[Parallel[ I r Parallell Prle
Iport I port I port I

PWM generator PWM generator
(HCTL- 1000) (HCTL- 1000)

Driver Driver

circuit circuit

[ncer o t r [ncoer Motor

Figure 9: Control implementation of a two degree-of-freedom manipulator
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2. The PWM generator converts the torque command into a pulse width modulated voltage signal to

the motor resulting in the application of the torque to the link.

3. The motor position is measured by optical encoders and transmitted to the MC68K microprocessor

board where it is stored until needed by the host computer (for various purposes).

6.2 Experimental procedure

We describe the procedure for experimentally determining S,. Because S, is a parallelogram in the R -

plane (see Figure 5), it is sufficient to obtain the four vertices A', B', C', and D' of S, which correspond,

respectively, to the vertices A, B, C, and D of the torque set T shown in Figure 3. Furthermore, because the

origin of the acceleration plane is the centroid of the parallelogram A'B'C'D', it is sufficient to determine

the vertices A' and B' which correspond, respectively, to the vertices A and B of the torque set T.

If rl,, and r2, denote, respectively, the magnitude of the maximum actuator torques at joints 1 and 2,

then

1. in order to generate point A' of ST, we should apply actuator torques ri,, and rI., respectively, at

joints 1 and 2, and

2. in order to generate point B' of ST, we should apply actuator torques ri", and -r2., respectively, at

joints I and 2.

The procedure to obtain the image point in S, (for example, A') corresponding to a point (r1, r2)- in

T (for example, A) is as follows:

1. Apply the actuator torques ri and r2 at, respectively, joints 1 and 2.

2. Measure the joint variables q (t) and q2(t) at regular sampling instants. (The particular sampling

time chosen was 0.01 second.)

3. Obtain the second rates-of-change of the joint variables 4i(k), i=1,2, at the k h sampling instant from

the following finite-difference equations,

4i(k) = qi(k+2)+qi(k) - 2qi(k+ 1) (2.37)
At 2
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Experimental result Calculated result Error

x(A=).- (-4.08, 6.02) I(A' ),i - (-3.91, 6.65,_

x(B=), (2.96, 6.31) x(B'),d - (3.91, 6.98)

.Ix(A)z-7.27 ix(A'),i =7.71 6%

1.IxC I = 6.97 I x(B' )c. = 8.00 13 %

Table 4: Comparison of experimental and calculated accelerations for two data points

where k, k+1 and k+2 denote, respectively, the k", (k + 1) h and (k + 2)"h sampling instants, and At

is the sampling time.

4. Determine the required acceleration of P, IP from

V = I I = P14+ '14. (2.38)

Since

4' f0,

JLP -f J4. (2.39)

The coordinates 21 and 22 obtained from the equation (2.38) above is the required image point in S1.

The following details apply to the particular experiments which we performed:

1. The experiments were performed for the configuration qj = 0 and q2 = 900;

2. The parameters for the two links are given in section 5.

3. The maximum actuator torques applied were 'rl = 8.12 Nm and ir2, = 0.17 Nm, which were in the

set of actuator constraints determined in the previous section.

6.3 Experimental results
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Figure 10: Comparison of experimental (dotted parallelogram) and calculated (solid

parallelogram) start-up acceleration capability of the manipulator

The experimental results for the determination of the points A' and B' are given in Table 4 and

graphically described in Figures 10. Also included are the theoretical results. From Table 4, we see that

the experimental and theoretical r-sults agree within experimental error ( < 15 % ) and are certainly good

enough for our purposes.

In Table 5, we compare the values of the start-up acceleration properties amXS and amobtained

from experiment and theory; the theoretical and experimental results agree to within 10 %. The results

of the experiment demonstrate the feasibility of using our theory to determine acceleration capabilities.
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Acceleration properties Acceleration properties Error

(experiment) (theory)

am = 7.27 a,~,m=8.0 9%

aiom = 3.63 = 3.91 7 %

Table 5: Comparison of experimental and calculated acceleration properties (m/s 2), (Error

= I a - a. I/a.)
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7 Summary and conclusions

Using the theory of acceleration sets, (Desa and Kim, 1989), we have defined (in section 3) six

performance measures which can be used as a basis for designing manipulators for performance. We then

illustrated the usefulness of these perforniance measures by applying them to the solution of the following

two manipulator design problems.

1. Selection of the "best" manipulator type from a set of alternative manipulator types

2. Determination of minimum actuator sizes to achieve desired isotropic acceleration.

An explicit procedure was given in section 4 to solve the first problem, viz. "type selection". Algorithms

for the determination of actuator sizes anm given in section 5.

Finally in section 6, we addressed the experimental determination of the maximum and isotropic start-up

acceleration and presented experimental results which verified the theory for start-up acceleration sets and

start-up acceleration properties.
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Appendix. Equations of motion for planar manipulators

1. Jacobian matrix

The joint velocity is related to the velocity in Cartesian space by the Jacobian matrix,

x=Jq.

The Jacobian matrix J for the three types of manipulators are as follows:

Manipulator type 1:

-11 sinq, - 1 sin(ql + q2) -12 sin(qI + q2)

L11 cos qI + 12 cos(ql + q2) 12 cos(ql + q2)

Manipulator type 2:

11 cos q, 15 cos q2

Manipulator type 3:

-it sinqi -12 sinq211 cos q, 12 cos q2

When this relationship is differentiated with respect to the time, we obtain the following equation.

k = Jq + 3 =Jq - E{4} 2  (2.40)

where E is the matrix which has the following elements:

Manipulator 1:

E= [I cos qi + 12 cos(qI + q2) 12 cos(ql + q2) ]
L1Isinqi+12sin(qI+q2) 12si(ql+q2) J

Manipulator 2:

11 cosq, I5cosq2 1
E= 11sinqI 15 sin qz J

Manipulator 3:
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[= 11cos q, 12 cosq21

I sin q, 1 2 sin q2

2. Dynamic equations

The dynamics of a two-degree-of-fredom planar manipulator is described by the following equation:

DQ + V{4} 2 = r. (2.41)

The components of matrices D and V an as follows:

Manipulator 1:

D= l l+mjdf+ 1
2 +m2(aj2 +2a 2lcosq2 +) 12+m2(ai2+a211cosq2)]

12 I+M2(a22+ a2li cos q2) 12+ M2aj J

V01 -m2a21 sin q2
v= M2 a2 IISn q2  0

Manipulator 2:

D [ 1+ ma i+ m3 t+4 + m4a2 (m4a4 + m3a31)cos(q, - q2) 1
(m4a412 +m3a311)coS(qI - q2) 12 + m2a + m41 +13 +m3ai

V" - 0 (ma41 + ma) sin(ql-q2)

S-(m0412 + mas) sin(qq - q2) 0

Manipulator 3:

D 11 + mal + m212 m2a211 cos(q - q2)
- m2a2l! cos(qi - q2) 12 + m-ai ]

V [0 m2a2lI sin(q - q2)]

[ -m2a211 sin(ql - q2) 0 ]

The nonlinear vector {4)2 is as follows:

Manipulator 1:
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+ )2 J
Manipulator 2:

4 1= [4 124 ]
Manipulator 3:

4)}2  2 ~

3. Acceleration equation

The expression of the acceleration of the end-effector is as follows:

I= Ar + B{4}2  (2.42)

where

A = JD-' t(2.43)

B =-AV - E (2.44)

where J, D. V and E are given above for each manipulator type.
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